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Abstract

In this paper we compare the behaviour of three competing
accounts of decision making under uncertainty (a Bayesian
account, an associationist account, and a hypothesis testing
account) with subject performance in a medical diagnosis
task. The task requires that subjects first learn a set of symp-
tom/disease associations. Later, subjects are required toform
diagnoses based on limited symptom information. The com-
peting theoretical accounts are embodied in three computa-
tional models, each with a single parameter governing the
learning rate. Subjects’ diagnostic accuracy was used to cali-
brate the learning rates of the models. The resulting parameter-
free models were then used to predict subjects’ behaviour ina
subsequent related diagnosis task. The fit between the Asso-
ciationist model’s predictions and subject behaviour was poor.
The fit was slightly better in the case of the Bayesian model,
but the hypothesis testing account proved to provide the most
adequate account of the data.

Introduction
Many decisions in real life are made under conditions of un-
certain or incomplete information. Bayesian probability the-
ory provides an optimal approach to such decisions when the
uncertainty in the evidence can be quantified in the form of
probabilities. In many cases, however, such quantitative in-
formation is not available, and even when it is, people fre-
quently fail to make correct use of it, as in the well-known
cases of base rate neglect (Kahneman & Tversky, 1973).

Although the Bayesian approach to decision making under
uncertainty may be optimal, a number of other, sub-optimal,
approaches yield plausible decision making behaviour. Gluck
& Bower (1988), for example, have demonstrated that an
associative network employing a Rescorla-Wagner (1972)
learning rule can learn a disease categorisation task in which
symptoms are probabilistically associated with diseases. The
task is effectively a decision making task in which symptoms
are unreliable indicators of possible diseases. Gluck & Bower
compared the behaviour of their model with that predicted by
a Bayesian account, and with that of human subjects. They
report a correlation of 0.94 between subject performance and
the model’s performance, suggesting that non-Bayesian ac-
counts are indeed capable of producing human-like perfor-
mance.

Further doubts about the psychological significance of
Bayesian approaches to decision making under uncertainty

are raised by Gigerenzer & Goldstein (1996), who suggest
that the cognitive plausibility of such accounts is undermined
by human performance limitations. They suggest that in
real-life people rely on “fast and frugal” heuristics which
approximate optimal behaviour. In support of this position
Gigerenzer & Goldstein (1996) compared the decision mak-
ing behaviour of four algorithms employing different forms
of bounded computation with an optimal regression model.
Several of the bounded algorithms achieved levels of perfor-
mance equivalent to the mathematically optimal model. This
work demonstrates that, at least on certain tasks, fast and fru-
gal approaches are capable of producing near optimal deci-
sion making performance, and hence that viable alternatives
to Bayesian decision algorithms do exist.

It would be wrong to suggest, however, that the results of
Gluck & Bower (1988) and Gigerenzer & Goldstein (1996)
provide unequivocal evidence against Bayesian processes in
human decision making. Thus, although the correlation ob-
tained by Gluck & Bower (1988) between subject perfor-
mance and the performance of their associative network was
high (0.94), it was not as high as the correlation between
subject performance and that of a Bayesian approach (0.99).
More critically, the root mean square error between disease
probabilities as predicted by the associative network and the
subjects was more than twice that between disease probabil-
ities as predicted by the Bayesian account and the subjects.
The correlation of 0.94 (obtained by choosing an appropriate
value for the learning rate, a free parameter in the associative
network) is less convincing when considered in this light.

The import of the results of Gigerenzer & Goldstein (1996)
is similarly open to question. The difficulty here lies in the
fact that their evaluation of non-Bayesian approaches did not
involve comparison with human data. Fast and frugal algo-
rithms were found to perform as well as a mathematically
optimal account — one based on multiple regression, and,
in fact, formally equivalent to an associationist model — but
human data was not collected on the task which they investi-
gated.

In previous work (e.g., Fox, 1980; Cooper & Fox, 1997;
Yule, Cooper, & Fox, 1998) we have compared the normative,
quantitative, Bayesian account of decision making under un-
certainty, and a qualitative, hypothesis testing account, with
human performance on a medical diagnosis task. Subjects
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Table 1: Conditional probabilities of symptom given disease

Symptoms
sym0 sym1 sym2 sym3 sym4

dis0 1.00 0.00 0.25 0.00 0.25
dis1 0.00 0.50 1.00 0.50 1.00
dis2 0.50 1.00 0.00 0.00 0.25

D
is

ea
se

s

dis3 0.00 0.00 0.25 1.00 0.00

rarely achieved the levels of performance suggested by either
computational account, but the general pattern of subject per-
formance more closely resembled the hypothesis testing ac-
count. In this paper we extend that work by 1) adding reason-
able performance limitations to the Bayesian and hypothesis
testing accounts (thus bringing baseline performance into line
with subjects); 2) extending the comparison by including an
associationist (two-layer feed-forward network) model in the
set of competing computational accounts; 3) modifying the
experimental task such that subject performance on one de-
pendent measure can be used to calibrate the various models,
which may in turn be used to predict subject performance on
a second dependent measure; and 4) examining the effect on
human and predicted behaviour of different training histories.

We begin by describing the diagnosis task in detail and out-
lining the mechanisms behind the three models. We then re-
port an experiment in which human subjects learned to per-
form the diagnosis task. This performance is then used firstly
to fix the learning rate in each model, and then to evaluate the
resulting parameter-free models.

The Diagnosis Task
The task of diagnosis is essentially one of categorising a set
of features or symptoms as corresponding to one of a set
of known diseases. There are numerous variations on the
task. Fox (1980) employed five symptoms and five diseases.
All diseases were equally likely and subjects were required
to query symptoms in sequence before offering a diagnosis.
Gluck & Bower (1986) employed four symptoms and two
diseases, but the occurrence of one disease was rare in com-
parison to the other. Here, subjects were allowed complete
symptom information when making their diagnoses. The ver-
sion of the task employed in the current work is derived from
that of Fox (1980). Four diseases (hypothetical strains of ’flu)
and five symptoms were employed. All diseases were equally
likely, and symptoms were unreliable indicators of diseases.
Table 1 shows the probability of each symptom occurring for
each disease. Thus, one in four patients suffering fromdis0
would havesym2.

The diagnosis task can be presented in two forms. In the
simplest form, the subject makes a diagnosis based on full
symptom information. That is, the presence/absence of each
symptom is known, and the subject must select which of the
four diseases is most likely. With the symptom/disease asso-
ciations employed here, it is always possible to discriminate

between diseases based on full symptom information.
A more challenging form of the diagnosis task involves

presenting subjects initially with one symptom (the present-
ing symptom), and requiring them to query just those symp-
toms necessary to make a diagnosis (and then to make a di-
agnosis when appropriate). This version of the task is natu-
ralistic in that it corresponds closely to the task of a general
practitioner. It also yields rich data in the form of symptom
querying strategies. However, the data are difficult to inter-
pret because different subjects appear to employ different “di-
agnostic thresholds” — some subjects are willing to offer a
diagnosis on the basis of few symptoms, whereas others play
safe and query most or all symptoms.

The freedom allowed to subjects in this more challenging
version of the task, and its manifestation in the form of a di-
agnostic threshold, also poses methodological problems for
evaluating computational accounts of subject behaviour. The
diagnostic threshold effectively introduces a free parameter
into the model of a subject, allowing the modeller an addi-
tional degree of freedom with which to account for subject
behaviour.

The experiment reported below yields data on symptom
querying strategies whilst overcoming the difficulty of diag-
nostic thresholds by presenting subjects with one symptom,
and then requiring them to query exactly one further symptom
before offering the most likely diagnosis. There is no scope
for a diagnostic threshold in this form of the task. Whilst in-
dividual differences may still exist, such differences must be
attributed to other factors (such as learning rate, or strategic
elements).

In fact, previous research has shown large between-subject
differences on diagnosis tasks (e.g. Yule, Cooper & Fox,
1998), even with little apparent variation in diagnostic thresh-
old. The task can be taxing, and motivational factors are
likely to play a role. However, between-subject differences
may also be attributable to differences in training history.
That is, if during training subjects are exposed to randomly
generated sequences of cases of diseases, then their diagnos-
tic behaviour may be influenced by idiosyncratic features of
their training materials. This is especially likely to be true if
training is limited. Training history is therefore another factor
considered in the experiment reported below.

Theoretical Accounts of Diagnosis
The Bayesian Approach
The Bayesian approach to the categorisation element of diag-
nosis is straightforward and well documented (see, for exam-
ple, Fox, 1980). The probability of each disease can be cal-
culated from symptom information provided that disease base
rates and the conditional probabilities of each symptom given
each disease are known (assuming independent symptoms).
Workable approximations to each of these probabilities can
be computed from frequency information, acquired as part of
the learning of symptom/disease associations.

Symptom selection, when incomplete symptom informa-
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tion is provided, may be determined through calculation of
the informativeness of each indeterminate symptom. Oaks-
ford & Chater (1994) suggest that cue selection on the basis of
informativeness (in conjunction with assumptions about the
distribution of cues) provides a good account of subject be-
haviour in related tasks, and point to appropriate information
theoretic measures of informativeness (Shannon & Weaver,
1949; Wiener, 1948).

Previous research has shown that this Bayesian approach
significantly outperforms subjects when learning the diag-
nosis task (Yule, Cooper & Fox, 1998). In order to reduce
performance to human levels we suggest imperfect record-
ing of frequency information relating to both base rates of
diseases and disease/symptoms co-occurrences. In particu-
lar, the model that generated the data reported below includes
a parameter, the learning rate, which specifies the probabil-
ity that frequencies will be updated on any given trial. Thus,
when this parameter is set to 0.10 (a value which yields be-
haviour at levels comparable to human subjects), frequency
information will be recorded (and hence employed in deter-
mining the informativeness of symptoms and the probabilities
of possible diagnoses) on 1 in 10 trials on average.

The Hypothesis Testing Approach
Fox (1980) described an approach to the diagnosis task which
generated propositional hypotheses about possible diseases
and reasoned over those hypotheses when determining appro-
priate symptoms to query or diagnoses to offer. Cooper & Fox
(1997) extended that model to account for learning during the
diagnosis task, and Yule, Cooper & Fox (1998) compared the
performance of that model and a Bayesian model with subject
performance on a version of the diagnosis task.

We do not describe the model again here, except to say that
the presence or absence of symptoms triggers the model into
forming hypotheses about possible diseases. These hypothe-
ses lead the model to expect further symptoms, which form
the basis of the model’s querying strategy: the model will ask
about symptoms if it expects them to be present given any of
the hypothesised diseases, in an order determined by recency
in its knowledge base. When provided with diagnostic feed-
back, the model adjusts its beliefs about the relations between
symptoms and diseases, and about the symptom patterns as-
sociated with diseases.

In the model employed in the current work, this updating
is probabilistic, with the probability of updating on a given
trial being determined by a learning rate parameter analogous
to that in the Bayesian model. As in the Bayesian account,
this probabilistic learning allows the model’s diagnostic per-
formance to be brought approximately into line with that of
subjects.

The Associationist Approach
The diagnosis task may also be performed by an associative
network employing a Rescorla-Wagner (1972) learning rule.
As noted above, Gluck & Bower (1988) argue that this learn-
ing rule, which is formally equivalent to the Delta rule, ac-

counts well for human performance in their version of the
diagnosis task.

Our implementation of the associationist approach follows
traditional lines: a two-layered network maps five input nodes
(corresponding to symptoms, and set equal to+1.00 when a
symptom is present,�1.00 when a symptom is absent and
0.00 when a symptom’s status in unknown) to four output
nodes (corresponding to the four diseases). On testing cycles
the symptom vector is fed to the network and the most active
disease node is offered as the diagnosis. On training cycles
the network’s weights are adjusted according to the standard
Delta rule. The learning rate constitutes a parameter of the
model (again allowing the model’s diagnostic accuracy to be
calibrated with that of human subjects), that scales the dif-
ference between network output and the training signal (�),
so the network weights are changed by an amount equal to
(learning rate� �).

Standard associative network approaches to the diagnosis
task do not obviously generalise to the version of the task
in which symptom selection is required. In our implementa-
tion, a second associative network is trained on instances of
the identity map between symptom vectors corresponding to
those symptom patterns actually presented to the main symp-
tom/disease network. The rationale for this is that, after train-
ing, incomplete symptom information will be mapped by this
network to a symptom vector resembling a previously seen
pattern. The most active symptom in this vector whose pres-
ence is indeterminate is the symptom that is queried. This
approach is far from optimal, but it is closer to associative
principles than the most obvious alternative: to test the symp-
tom/disease network on all possible extensions of the cur-
rent symptom information and then select the symptom cor-
responding to the extension yielding the strongest diagnosis.

Experiment: Rationale and Method
52 second year psychology students from Birkbeck College
took part in the experiment, with 13 subjects in each condi-
tion. The conditions differed only in the sequences of cases
presented, as described below.

Subjects in all conditions completed 5 blocks of trials.
Blocks 1 and 3 were training trials in which full symptom and
disease information was presented to all subjects. Subjects
were required to step through trials in these blocks at their
own pace, whilst attempting to learn the symptom/disease as-
sociations. These blocks comprised 12 trials each. The de-
gree of learning in the training blocks was assessed in blocks
2 and 4. Here, subjects were required to make diagnoses
based on full symptom information. Feedback (in the form
of the actual underlying disease) was given on these trials, al-
lowing subjects to further improve their diagnostic accuracy.
These testing blocks also consisted of 12 trials. In the fifth
and final block subjects were presented with a single present-
ing symptom. They were required to query the presence of
exactly one further symptom and then make a “best guess”
diagnosis. Diagnostic feedback (i.e., the actual underlying
disease) was given in the case of error. This block consisted
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Table 2: Mean diagnostic accuracy (%) in each block and
training history condition (Human data).

Training Block 2 Block 4 Block 5
History N Mean SD Mean SD Mean SD

1 13 50.6 25.1 55.1 24.7 49.6 21.0
2 13 50.6 19.7 62.8 20.3 48.5 20.2
3 13 60.9 22.7 59.6 22.5 53.1 21.9
4 13 50.0 18.0 59.6 14.8 49.2 11.5

Total 52 53.0 21.4 59.3 20.5 50.1 18.6

of 20 trials. Subjects were instructed of the block structure
before commencing the task, and knew that they would be re-
quired to identify diseases based on minimal information in
the final block. They were instructed that in this final block
they should query the symptom that would be “most helpful
to them in making their diagnosis”.

Symptoms and diseases were related according to the prob-
abilities given in Table 1, with four strains of ’flu (Aus-
trian ’flu, Belgian ’flu, Greek ’flu, and Danish ’flu) being
mapped onto the disease names and five common ’flu symp-
toms (headache, shivering, sore throat, coughing, and sneez-
ing) being mapped onto the symptom names. This map-
ping was randomised across subjects. Three cases of each
disease occurred in each of the first four blocks, with five
cases of each disease in the final block. In order to exam-
ine the effect of training history the sequence of cases pre-
sented to each subject was generated from one of four ran-
dom seeds. Subjects were allocated at random to a training
history group. (Training history was thus a between-subject
independent variable.)

The experiment was administered by networked software
running over the department’s intranet. The software, written
in JavaScript for use with web browsers, randomly assigned
subjects to each of the four training conditions and collected
subject responses at the end of each block.1

Results
Diagnostic accuracy Table 2 shows mean diagnostic accu-
racy for each training history condition, in each of the blocks
in which a diagnosis was required, namely 2, 4 and 5. A two-
factor, mixed-model ANOVA shows a significant effect of
block (F (2; 96) = 7:70; p < 0:0008), but no effect of train-
ing history(F (3; 48) = 0:28) and no interaction(F (6; 96) =0:91). The increase in diagnostic accuracy between blocks 2
and 4(F (1; 48) = 5:32; p < 0:0254), and the decrease be-
tween blocks 4 and 5(F (1; 48) = 20:89; p < 0:0001), are
both significant. So there is evidence of learning during the
training phase of the experiment, and of disruption of perfor-
mance by the different task in the final block, but no evidence
of any effects of training history on diagnostic accuracy.1A demonstration of the client system is available at
http://redback.psyc.bbk.ac.uk/expts/jdm4/demo/

Table 3: Overall mean diagnostic accuracy (%) in each block
for each model (N = 52 each).

Block 2 Block 4 Block 5
Model L.R. Mean SD Mean SD Mean SD
Bayes. 0.10 39.3 16.3 60.3 17.4 74.8 15.1
Hypot. 0.25 41.0 15.6 57.8 13.9 56.3 16.1
Assoc. 0.015 36.3 17.2 58.0 20.3 57.0 14.6

Model calibration Each model contains one free param-
eter, a learning rate, which determines the speed and accu-
racy of learning. Human diagnostic accuracy data for block
4 was used to calibrate learning in all models as follows.
For each model, simulations (comprising 52 virtual subjects,
13 in each training history condition) were conducted for a
range of learning rates. Learning rates in each model were
then fixed at values leading to diagnostic accuracy on block
4 which was most commensurate with the human data. This
approach resulted in a learning rate of 0.10 for the Bayesian
model, 0.015 for the associationist model, and 0.25 for the
hypothesis testing model. (These rates are not comparable
because of the different learning mechanisms within each
model.) Once calibrated, all models make parameter-free pre-
dictions for symptom query patterns and diagnostic accuracy
on the final block. The experiment was deliberately designed
to allow this approach to model testing.

Table 3 shows mean diagnostic accuracy for each cali-
brated model. It is clear that all the models show larger
differences between blocks 2 and 4 than do human subjects.
Also, the Bayesian model’s diagnostic performance improves
markedly on the final block, whereas the other models’ per-
formances do not, but none of the models show the decrease
in performance observed in the human data.

Human symptom queries Table 4 shows frequencies of
each possible symptom query, for the final instance of each
presenting symptom, in the final block. For each row, there
is a �2 test for nonrandom distribution of queries (d.f.=3).
From the table, there are significant departures from random
distribution for queries followingsym1 presenting andsym4
presenting. By inspection of the peaks in each row, we can
see that givensym1 presenting, human Ss tend to querysym0,
and givensym4 presenting, Ss tend to querysym2.

Bayesian Model Table 5 shows the final symptom query
frequency table for the Bayesian model. There are only two
significant query biases, forsym0 andsym3 presenting. These
do not correspond to either of the significant human biases.
However, givensym0 presenting, the Bayesian model tends
to querysym1, and although the human effect does not reach
significance, its maximum is alsosym1. But the Bayesian ten-
dency to querysym4 givensym3 is not reflected in the Human
data.

Moreover, the significant human effects are not paralleled
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Table 4: Final symptom query frequencies for each present-
ing symptom (Human data, rowN = 52).

Pres. Query
Sym. sym0 sym1 sym2 sym3 sym4 �2(3) p
sym0 19 9 14 10 4.77
sym1 19 9 14 10 9.69 .021
sym2 13 8 14 17 3.23
sym3 11 17 13 11 1.85
sym4 14 6 21 11 9.08 .028

Table 5: Final symptom query frequencies for each present-
ing symptom (Bayesian model, rowN = 52).

Pres. Query
Sym. sym0 sym1 sym2 sym3 sym4 �2(3) p
sym0 26 7 9 10 17.69 .001
sym1 15 18 8 11 4.46
sym2 13 14 10 15 1.08
sym3 6 10 12 24 13.85 .003
sym4 14 15 12 11 0.77

by the corresponding non-significant Bayesian effects; given
sym1 the Bayesian model tends to querysym2, unlike the hu-
man preference forsym0, and givensym4 the Bayesian model
queriessym1, notsym2.

Hypothesis Testing Model Table 6 shows the final symp-
tom query frequency table for the Hypothesis Testing model.
This exhibits strong, highly significant biases for each pre-
senting symptom. With regard to the presenting symptoms
which give significant querying biases in the human data,
sym1 andsym4, the Hypothesis Testing model generates max-
ima in the same places as do human subjects; it tends to query
sym0 givensym1 (cf. Bayesian model), andsym2 givensym4.
But also, even where the human bias is non-significant, the
model still predicts the most frequent query correctly in two
of three cases, withsym0 andsym2 presenting, and fails to
predict the human bias only withsym3 presenting.

Associationist Model Unfortunately the associationist
model produced no significant symptom querying biases at
all when calibrated to the human level of diagnostic accuracy
and subject numbers. Consequently these data are not pre-
sented; instead, the model was rerun with a larger number of
virtual subjects (120), at the same learning rate, resulting in
Table 7.

As Table 7 shows, there is only one significant symptom
query bias, forsym3 presenting, when the model tends to
querysym4. (Curiously, all the models predict the same bias
for sym3, but the human bias is non-significant and in a dif-
ferent direction.) The Associationist model also shows an
almost-significant bias to querysym3 givensym1, unlike the

Table 6: Final symptom query frequencies for each present-
ing symptom (Hyp. Testing model, rowN = 52).

Pres. Query
Sym. sym0 sym1 sym2 sym3 sym4 �2(3) p
sym0 25 12 6 9 16.15 .001
sym1 27 7 3 15 25.85 .001
sym2 5 2 5 40 75.23 .001
sym3 4 7 18 23 18.61 .001
sym4 1 9 33 9 44.30 .001

Table 7: Final symptom query frequencies for each present-
ing symptom (Associationist model, rowN = 120).

Pres. Query
Sym. sym0 sym1 sym2 sym3 sym4 �2(3) p
sym0 33 35 22 30 3.27
sym1 25 25 42 28 6.60 (.086)
sym2 35 24 31 30 2.07
sym3 28 25 23 44 9.13 .028
sym4 32 29 29 30 0.20

other models and unlike the significant human tendency to
querysym0.

Discussion of results
The relative absence of significant biases in the Bayesian
model symptom query data is attributable to the large amount
of random variance in the model’s behaviour, a consequence
of its low learning rate. With higher learning rates, or with
larger numbers of virtual subjects at the same learning rate,
the model’s predictions are quite clear for all presenting
symptoms. But as things stand, such predictions as there are
from the Bayesian model are not very well borne out in the
human data.

Unfortunately, even with large numbers of virtual subjects
the predictions of the Associationist model are minimal, and
do not correspond to human query biases. So we can con-
clude that of the three, the associationist model gives the
poorest account of the human data.

The Hypothesis Testing model successfully predicts the
significant symptom querying biases in the human data, as
well as the directions of most of the non-significant ones, so
it easily fares best of the three models. We are in the process
of collecting more human data, in order to determine if more
of the human query biases are significant. With more human
data, we also expect to be able to investigate possible effects
of training history on symptom querying strategies.

The assumption that human levels of performance can be
simulated by manipulating models’ learning rates was rea-
sonably successful, in that it produced a good fit between hu-
man symptom querying patterns and the predictions of one of
the models. However, none of the models generated learning
curves of the same shape as the human curve, since the cali-
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brated models performed more poorly than humans on block
2, and better than humans on block 5. It seems that humans
reach peak performance quite early in the experiment, but find
it hard to improve much thereafter. Their performance is then
significantly disrupted on the final block, where the task is
somewhat different.

General Discussion
The observed superiority of the hypothesis testing model over
the Bayesian in fitting human symptom querying behaviour
replicates previous findings (Yuleet al., 1998; Fox, 1980),
despite substantial variations in task, materials, experimen-
tal interface and methods of analysis. The hypothesis testing
model owes its success to two factors: it only queries symp-
toms expected to be present given any of the hypothesised
diseases (i.e., it contains a confirmation bias), and queries are
ordered according to a recency principle in memory (such that
behaviour is determined more by recent events than by those
in the more distant past). It is reasonable to ask if incorpora-
tion of these biases in the other models would improve their
fit with the human data.

With respect to the Bayesian model, symptom queries are
selected on the basis of expected information gain, and as
in previous studies, while the model can predict human be-
haviour in a few cases, it does not yield a good overall fit
with human questioning patterns. Oaksford & Chater (1994)
have argued that Bayesian approaches in similar information
seeking tasks can give a good account of human performance
when they are supplemented with a “rarity assumption”. In
the current task, such an assumption would have the effect
of restricting the search for evidence to symptoms expected
to be present given the most likely diseases. In other words,
in the current task such an assumption would amount to a
Bayesian implementation of a confirmation bias. Incorpora-
tion of the rarity assumption into the Bayesian model is there-
fore of some importance.

The second factor contributing to hypothesis testing
model’s superior performance, recency, might also be incor-
porated into a Bayesian model by weighting recent events in
the estimation of event frequencies used to determine the var-
ious numerical factors required by Bayes’ theorem. Such a
weighting is appealing given recency effects, but its incorpo-
ration would add an extra parameter to the Bayesian model,
thus raising further difficulties in model evaluation.

The associationist model could also benefit from a re-
evaluation of its approach to symptom querying. The diffi-
culty here is that in the first four blocks the model is given full
symptom/disease information. There is no obvious way in
which an associative network can produce sequential symp-
tom querying behaviour from this static information. Stan-
dard associative network approaches to sequencing (recurrent
networks) offer little assistance with this problem. Network
models employing competitive activation may be appropriate,
but such models have little in common with the associative
framework from where we started.

A final methodological point is in order. The precise form

of the experiment was dictated by the requirements of model
testing. We have not simply attempted to fit models to the
data. Rather, the experiment was designed to yield two de-
pendent measures: diagnostic accuracy and symptom query
strategy. The first measure was used to fix the single free
parameter in each model. The result was a set of predictive
models. Tables 5, 6, and 7 are modelpredictions — generable
(in principle) before subjects begin the final block of the ex-
periment. Few cognitive models are parameter free. For those
that are not, we strongly advocate a methodology such as ours
where, the requirements of model evaluation determine as-
pects of subsequent empirical work. This methodology, we
aver, is far more sound than the more common approach of
data fitting via the adjustment of parameter values.

In sum, the comparative evaluation of three very differ-
ent models of decision making under uncertainty, as ap-
plied to the medical diagnosis task, leaves us cautiously op-
timistic with respect to fast and frugal alternatives to optimal
Bayesian accounts. The evidence for purely associative pro-
cesses, however, appears weak.
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