
Towards an Object-Oriented Language for Cognitive Modeling

Richard Cooper
Department of Psychology
University College London

Gower Street
London WC1E 6BT

r.cooper@psychol.ucl.ac.uk

In Proceedings of the 17th Annual Conference of the Cognitive Science Society

Abstract

This paper describes work towards an object-oriented language
for cognitive modeling. Existing modeling languages (such as
C, LISP and Prolog) tend to be far removed from the techniques
employed by psychologists in developing their theories. In ad-
dition, they encourage the confusion of implementation detail
necessary for computational completeness with theoretically
motivated aspects. The language described here (OOS) has
been designed so as to facilitate this theory/implementation
separation, while at the same time simplifying the modeling
process for computationally non-sophisticated users by pro-
viding a set of classes of basic “cognitive” objects. The object
classes are tailored to the implementation of functionally mod-
ular cognitive models in the box/arrow style. The language is
described (in terms of its execution model and its basic classes)
before a sketch is given of a simple production system which
has been implemented within the language. We conclude with
a discussion of on-going work aimed at extending the coverage
of the language and further simplifying the modeling process.

Introduction: Rationale
The principle of “functional modularity”, whereby the behav-
ior of a complete system is determined by the interaction of a
number of semi-autonomous sub-systems, is a commonplace
within cognitive science. Many cognitive models, including
those from both the connectionist paradigm and the symbolic
paradigm, are based on the principle. The former is exempli-
fied by models such as Miikkulainen’s model of script pro-
cessing (Miikkulainen, 1993) and Burgess & Hitch’s model
of the articulatory loop (Burgess & Hitch, 1992). The lat-
ter is exemplified by models such as Barnard’s Interacting
Cognitive Subsystems model (Barnard, 1985) and production
systems such as Soar (Newell, 1990, which is modular in
the sense of having separable working memory and produc-
tion memory components). Hybrid symbolic/connectionist
models also employ functional modularity (e.g., Wermter &
Lehnert, 1989), and further models, such as Morton’s model
of the processing of words and pictures (Morton, 1981), adopt
functional modularity without making any commitment to the
underlying implementation.

Within cognitive psychology, functional modularity is of-
ten expressed in terms of box/arrow diagrams. These dia-
grams, which generally consist of a number of labeled inter-
connected boxes, have a long and checkered history stretching
back to Lichtheim (1885). Early criticisms failed to differenti-
ate between functional and structural modularity (see Shallice
(1988) for a review). More recently, critics have argued that
such diagrams are virtually contentless, but this accusation

can be rebutted by observing that the diagrams do make theo-
retical claims about functional modularity and the flow of data
between the modules. Such theoretical claims may be justi-
fied by, and tested against, empirically observed dissociations
between functioning (cf. Morton, 1981; Shallice, 1988).

Box arrow diagrams share a superficial resemblance to flow
charts, and this too has led to criticism. However, the two di-
agrammatic notations differ on several substantive grounds.
Crucially, flow charts encode algorithms and express the flow
of control. They are rooted in the traditional model of com-
putation as sequential processing, and (if taken to be more
than purely descriptive of behavior) seem to imply that flow
charts are somehow represented in the head and executed
by some conventional computational device. Box/arrow di-
agrams, in contrast, express functional modularity and flow
of data between functional modules. They make no claims
about sequential processing, and do not suggest the existence
of any program which the system deliberately follows.

Independently of their use in cognitive psychology, ideas
similar to those behind functional modularity have recently
achieved prominence within computer science. In particu-
lar, the object-oriented paradigm (see, e.g., Rumbaugh et al.,
1991) advocates the use of informationally encapsulated ob-
jects to which sub-computations can be allocated via specified
communication channels. As a result, Object-Oriented Pro-
gramming (OOP) offers the possibility of directly addressing,
withina sound computational framework, the functional mod-
ularity implicit in box/arrow diagrams. Specifically, within
an object-oriented paradigm, boxes might be directly mod-
eled as objects (of various classes), with arrows being directly
modeled as communication channels between those objects.

OOP has considerable potential utility within the domain
of cognitive modeling in virtue of the approach that it offers
to functional modularity. There are further arguments, how-
ever, for OOP within the discipline. Firstly, an object-oriented
class hierarchy may be used to facilitate modeling by provid-
ing a variety of object classes tailored to the requirements of
cognitive modeling. The class hierarchy described in the fol-
lowing section, for example, includes various different forms
of buffer common in psychological theorizing. By providing
the psychologist with a library of such classes, he/she may
implement a model without having to consider the detailed
implementation of the boxes within the model. That is, the
psychologist can work at the level of interacting buffers and
processes, etc., rather than at the level of C, Lisp, or Prolog
code. In this way, OOP can lessen the “distance” between the
language of the cognitive psychologist and the language of

556



the implementation. Secondly, OOP offers the possibility of
providing a truly declarative specification of a psychological
model. There are two advantages to such a specification: 1)
it frees the theorist entirely from the implementation level,
so the question of whether individual boxes are implemented
in symbolic or connectionist terms is side-stepped, and the
important issue of specifying the properties of the individual
boxes comes into focus;1 and 2) the box/arrow specifications
with which cognitive psychologists work are equally declara-
tive.

The declarative statement offered by OOP of box/arrow
diagram comes about by directly mapping the diagram to a
specification of object instances and communication channels.
Extending that statement to a complete declarative (and exe-
cutable) specification requires declarative specifications of the
processes internal to each box, but such specifications may be
given in, for example, the purely logical fragment of Prolog.
While this does not entirely free the psychologist from tradi-
tional programming, it does dramatically reduce the extent of
that programming.

OOS: Object-Oriented Sceptic
Is object-orientedness (including the provision of an appropri-
ate class hierarchy) the only requirement for a cognitive mod-
eling language? Certain functionality is implicated in a great
many cognitive theories (such as pattern directed processing,
content addressable memory retrieval and update, and the pos-
sibility of both sequential and parallel processing modes), and
a case can be made for providing these common features as
primitive operations in a modeling language. One language
which provides these primitives (but is not object-oriented)
is Sceptic (Hajnal et al., 1989; Cooper & Farringdon, 1993).
This modeling language (which is based on Prolog) has been
successfully applied in the implementation of a number of
cognitive theories, including theories of reasoning, memory,
motivation, automatic control of action, and two versions of
the Soar architecture (see Cooper et al., 1993). For present
purposes, the details of Sceptic are not important. This section
describes OOS (Object-Oriented Sceptic), a language devel-
oped in order to extend Sceptic’s capabilities by incorporating
support for object-oriented programming.

The Execution Model

A cognitive model specified in OOS consists of a set of box
declarations. These declarations specify the class of boxes
(e.g., limited-capacity buffer: see below), their class-specific
properties (e.g., the capacity of a buffer), and how they interact
(i.e., the arrangement of arrows between those boxes, in terms
of paired input and output ports). The underlying execution
model of OOS, the mechanism by which a cognitive model
specified in the language is animated, is cyclic. On each cycle
each object (i.e., each box) operates on any data waiting at
its input ports. The result of this processing depends on the
class of object in question. A typical process will transform
the data and send the transformed data as input to some other1This is not to say that the properties of certain classes of boxes
might not be more easily implemented in one technology or an-
other, but that box properties, rather than implementation technology,
should be the issue under discussion.

object, whereas a typical buffer will incorporate the data into
its state. All objects effectively operate in parallel.

Central to the execution model is a data bus, which con-
tains all data (or messages) in transit between boxes, i.e., all
messages that have been sent along an arrow from one box but
not yet received. In addition, each box has an internal state.
The state of the entire model at time t is fully determined by
the state of each box at time t together with the contents of
the data bus at time t.

The behavior of a box over time is determined by two
functions, a state transition function and an output function.
Each box is completely specified by its initial state (i.e., its
state at time t = 0) and these two functions.

If the state of box x at time t is denoted by stx, its input
denoted by {tx, and its state transition function by stx, then:st+1x = stx(stx; {tx)

The output of a box is similarly a function of its input and
its internal state, and consists of a multi-set of hmessage, box
identifieri pairs, with the interpretation that hm;xi represents
a message m bound for box x (and to be processed as input
to box x during the next cycle).

Elements of the bus are also hmessage, box identifieri pairs.
If we denote byBt the state of the bus at time t, then the multi-
set of messages in the bus at time t bound for box x, r(Bt; x),
is given by: r(Bt; x) = fm j hm;xi 2 Btg

The content of the bus at time t+1 is the union of the outputs
of all boxes, given their state at time t, and the messages bound
for them at that time. In symbols:Bt+1 = ]x2Xfb j b = outx(stx; r(Bt; x))g
where X is the set of all boxes which comprise the model,
and ] denotes multi-set union.

The Class Hierarchy
The class hierarchy developed to date is somewhat limited.
The root class in the class hierarchy is box. It has four
subclasses: buffer, process, data, and compound. More
subclasses (such as network objects) are easily added, and it
is anticipated that the class hierarchy will be extended as the
need arises.

Buffers: These are boxes that store information but have a
null output function: messages sent to a buffer may change
its state, but they will not produce output. The utility of a
buffer lies in the fact that its state may be read by process or
compound boxes (see below).

Buffers are sensitive to three sorts of messages. A clear
message will effectively remove all elements from the buffer
to which it is sent by replacing the existing state with an empty
state. A message of the form +X (where X is a Prolog term)
will add X to the buffer. A message of the form -Xwill delete
X from the buffer (provided X is currently in the buffer). A
buffer may receive any number of messages on one and the
same cycle. In this case, clear messages are processed be-
fore delete messages which are in turn processed before add
messages. No ordering is specified on the processing of mes-
sages within a particular category (e.g., within the category

557



of delete messages), as such ordering does not affect the final
result of processing within a cycle. This is consistent with
the treatment of the bus as a multi-set, with no ordering on its
elements.

Buffers have various properties which alter the way they
behave when they receive messages and when they are read.
A binary property indicates whether a buffer can store dupli-
cate copies of the same information, or whether duplicates
should be ignored. A second property specifies the order of
access (newest first; oldest first; or random) when the buffer
is read. A third property specifies whether the contents of
the buffer are subject to decay (and if so what form of decay).
Current options include: none; decay after a specified number
of cycles; and decay randomly with probability specified in
terms of a half-life. These properties must be specified for all
buffers.

The class buffer has two subclasses: unlimited capacity
and limited capacity. Limited capacity buffers have two
additional properties. The first specifies the capacity, and
the second specifies the action to take when this capacity is
exceeded (delete the most recent element to make room for the
new element; delete the least recent element; delete a random
element; or ignore the new element).

Specifying a buffer in OOS only requires that its subclass
and the value of the appropriate parameters be specified. The
use of classes and properties standardizes the notion of a buffer
(thus potentially increasing communicability of theories), and
also allows theorists to experiment with variations on a model
by varying the properties (e.g., the decay characteristics) of
individual subcomponents.

The intention is that the above properties and subclasses
should cover the majority of forms of buffer employed in
current psychological theorizing, though further application
of the language may well reveal further properties or sub-
classes. The motivation for the current properties and sub-
classes comes partly from existing psychological theorizing
and partly from logical possibilities that are consistent with
this theorizing. For example, in Fodor and Frazier’s model of
sentence processing (Frazier & Fodor, 1978; Fodor & Frazier,
1980), during processing the Preliminary Phrase Packager
(PPP) works on a fragment of the sentence under consider-
ation. In psychological parlance, the PPP makes use of a
limited capacity push through store. As each new word enters
the store, it pushes the least recent entry out. Within OOS,
the relevant box is a limited capacity buffer with duplicates
but without decay, with access via the most recent element
first and with the least recent element being deleted when the
capacity is exceeded. Fodor and Frazier do not specify the
capacity of the PPP’s buffer,2 but OOS allows one to exper-
iment with different capacities (by simply varying the value
of the corresponding property and conducting the appropriate
simulations), thereby allowing an optimal capacity (and the
effects of varying this capacity) to be determined.2Frazier & Fodor (1978: 293) comment that the capacity of
the PPP might not be defined in words, but in terms of syllables,
morphemes, or even time slices. If capacity is to be measured in
syllables, morphemes or time slices, then the input messages should
be packaged as syllables, morphemes, or time slices, respectively.
Capacity is defined strictly in terms of the elements which constitute
the messages that a buffer receives.

Processes: Processes are defined to be objects which trans-
form data according to fixed, well specified, rules. They may
be viewed as boxes which map from one representation to an-
other. The output function is defined to be independent of the
internal state, which cannot be queried. (As such, the internal
state is effectively redundant, and might as well be defined
to be null, with the identity mapping as the state transition
function.) Processes thus have no memory capabilities, and
in this sense they are the complement of buffers, which have
an internal state, but a null output function.

Two subclasses of process are available (triggered and
autonomous: see below), but because of the variability of
possible output functions, it is not currently possible to spec-
ify processes completely in terms of properties and further
subclasses. The output function of a process must at present
be defined via rewrite rules similar to standard Sceptic (see
Cooper & Farringdon, 1993, for details). This is an undesir-
able aspect of the current system, as it requires some knowl-
edge of a conventional text-based programming language.

Triggered processes are those which are activated by input
messages. If they receive no input, they generate no output,
but when triggered by input, they map that input according
to their output function. In a sense, triggered processes are
passive processes. Autonomous processes, on the other hand,
are active processes: they actively find data (by, for example,
reading the contents of a specified buffer) and produce output
on the basis of that data. Triggered processes may also read a
buffer’s contents when calculating their output, but they will
not attempt to produce output unless specifically triggered by
an input message.

Returning to Fodor and Frazier’s model of sentence pro-
cessing, the PPP can be seen to also include an autonomous
process which monitors the input buffer looking for phrasal
constituents, packaging such constituentswhen they are found
and sending them to the Sentence Structure Supervisor (SSS),
a collection of boxes which combine the PPP’s results into a
complete phrase marker for a sentence.

Data: Data boxes may be used to supply input data to a
model or to record output data from a model. The two sub-
classes of data box which serve these two functions are source
and sink. Data sources are initialized with a list of Prolog
terms (read from a file). On each cycle, if the source is not
empty, the first element of this list is removed from the source
and a copy of it is sent via any arrows to all boxes connected
to the source. Data sinks accumulate output, functioning in
the reverse way to data sources: on each cycle, any messages
sent to a data sink are appended to the sink.

Data boxes generally do not belong to a model in the same
way as other boxes do in that no psychological validity is
typically ascribed to them. Data sources might be used, for
example, to supply the posited results of perceptual processes
to boxes performing more central cognitive functions (thus
circumventing the problem of modeling perception), and data
sinks might be used to record the sequential output of the
cognitive process under investigation. Thus an appropriate
data source for the Fodor and Frazier model may comprise a
list of words, syllables, or morphemes which constitute the
input to the PPP. A data sink may then be used to collect the
phrase markers generated by the SSS.

558



Data boxes are very flexible and individual boxes or subsets
of boxes may be tested in isolation by lifting those boxes out
of the complete model and attaching data sources (with ap-
propriate inputs) at all disconnected input ports and data sinks
at all disconnected output ports. Thus, Fodor and Frazier’s
SSS may be tested/developed in isolation from the PPP (and
vice versa) by replacing the boxes comprising the PPP with
an appropriate data source that feeds directly into the SSS.

Compounds: Compound boxes are used where it is desir-
able to group other boxes together into a single functional
module. They might be thought of as a box within which
other boxes can be put, thus allowing a model to be hierarchi-
cally structured. There are no restrictions on the outputs or
states of compound boxes, and they serve no computational
function within the execution model. They are, however, vital
to the structured top-down development of models (see be-
low). With regard to the sentence processing model, it would
seem appropriate to treat the PPP and the SSS each as com-
pound boxes, both consisting of a network of processes and
buffers.

Communication
Within OOS communication between boxes is generally spec-
ified by defining arrows from the source box to the target box.
Thus, to specify that data should be feed from a data source to
a process, an arrow must be defined from the data source to the
process. Defining a second arrow from the data source to, for
example, a buffer, will result in the data from the source being
simultaneously sent from the source to both the process and
the buffer. The exception to this simple means of establishing
communication channels arises with messages sent from pro-
cesses, which must be explicitly addressed to a named target
box (or to several named target boxes). This is to allow a
single process to generate multiple messages for a variety of
target boxes. Explicit addressing is performed in modified
Sceptic within the specification of a process’ output function.

Methodology: Building Models with OOS
There are three stages to developing an OOS model. Firstly,
the model shouldbe drawn in diagrammatic (box/arrow) form.
Where modules with both processing and buffering capabil-
ities are required, compound boxes should be used. These
can “opened up” at stage 3. Compound boxes thus facilitate
a top down, structured, approach to the development of an
OOS model: global characteristics of the model can be spec-
ified before lower-level details of individual compounds are
considered. This is consistent with psychological theorizing,
where many boxes typically have complex processing char-
acteristics (though those processing characteristics are often
only specified informally).

Secondly, the class (or subclass) of each box must be deter-
mined, and the relevant properties specified. At this stage, the
capacity or decay characteristics of buffers should be spec-
ified, and questions of whether processes are triggered or
autonomous must be addressed.

Thirdly, the internals of those boxes which have internals
must be specified. At this stage data must be specified for the
various data sources, code must be given to specify the output
functions of the various processes, and compound boxes must

be decomposed into their constituent sub-boxes (which may,
in themselves, be compound boxes). The contents of a data
source will be the data which is to be used to test the model.
Specifying this data may involve making assumptions about
perceptual processes and the representation of data which is
delivered to the model. With regard to processes, these may,
in the first instance, operate as look-up tables. Given that the
test data is specified, processes may initially be specialized
so as only to respond appropriately to this data. Once the
complete model has been debugged and is operational, the
output functions of processes can be generalized (keeping in
mind that their input/output characteristics in the original do-
main must be preserved). Compound boxes must be specified
recursively. That is, for each compound box the three stages
outlined here must be repeated, until all compound boxes at
all levels have been decomposed into networks of primitive
boxes.

Compound boxes are effectively a way of bracketing a part
of the model as a complete sub-model. Given this, a second
appropriate development methodology involves developing
detailed specifications of compound boxes in isolation. As
noted above, the interaction of a particular compound box
with the remainder of the model can be simulated with data
sources and data sinks, and in this way a detailed model of
one component can be formulated (and executed) before the
complete model has been specified.

OOS lessens the problems of confusing theoretically mo-
tivated aspects of a program with implementation detail by
lessening the distance between the theoretical statement of
the theory and its implementation. In doing so, OOS forces
the theorist to consider questions which might otherwise have
been ignored (such as the access properties of a buffer, or
indeed the specification of any properties specific to a partic-
ular box). It might be argued that such questions are truly
implementation details, and should not concern the psycho-
logical theory. This position is justified only if the behavior
of the complete model is independent of the precise value
of the property in question. Within OOS it is possible to
experimentally test such claims. In particular, the theorist
can examine the effect of various objects’ parameters on the
model’s behavior. Hence, by systematically varying the rel-
evant parameters and conducting the appropriate simulations
the truth of such claims concerning implementation detail can
be ascertained. OOS is thus more than simply an implemen-
tation tool. By bring implementation claims to the forefront,
and by allowing those claims to be tested, OOS can actually
inform psychological theorizing.

An Example: A Simple Production System
In order to illustrate the power and simplicity of OOS this
section sketches the implementation of a simple production
system within the language. Figure 1 depicts a box/arrow
diagram corresponding to such a production system. In this
figure, hexagons represent processes, rounded rectangles rep-
resent buffers, and diamonds represent data boxes. Arrows
with standard arrow heads indicate message sending. Arrows
with black triangular tails indicate buffer reading. Thus, the
process “Resolve Conflicts” reads “Match Memory” and “Re-
fractory Memory” and sends messages to “Refractory Mem-
ory” and “Fire Productions”.

559



Production Memory

Match Memory

Working Memory

Match Productions Resolve Conflicts

Fire Productions

Refractory Memory

Output

Figure 1: Box/arrow representation of a simple production
system.

The diagram is considerably more complex than some pro-
duction system diagrams, which typically only show working
memory and production memory. This is because Figure 1 is
complete. It shows all processes and buffers, and all commu-
nication channels, necessary for a simple production system.

It can be seen then that a production system involves four
buffers (i.e., memory components). As well as working mem-
ory and production memory, a match memory (in which cur-
rent instantiations of productions are held) and a refractory
memory (in which previously fired instantiations of produc-
tions are held) are required. These are all modeled as unlim-
ited capacity decay-free buffers, although OOS allows for the
possibility of exploring capacity restrictions or decay charac-
teristics (see Cooper et al., 1993, for details of experiments
with working memory and match memory decay in the Soar
production system). Each buffer is specified completely in
terms of its properties and the subclass of buffer of which it
is an instance.

There are three distinct processes. “Resolve Conflicts” is
an autonomous process which monitors match memory and
refractory memory. When it discovers new production instan-
tiations in match memory which are not in refractory memory,
it sends the elements on the right hand side of those instantia-
tions to “Fire Production” and adds the instantiation to refrac-
tory memory. “Fire Productions is a triggered process. When
it receives a message it adds an element to working memory
or sends a message to the output (depending on the message
received). These processes are distinct from the “Match Pro-
ductions” process which monitors working memory and pro-
duction memory, looking for production instantiations which
should be added to match memory. Note that each process is
specified locally — as an encapsulated object that responds in
a specified way to specified inputs.

The figure embodies a theory of the functional structure
of a production system, and there is a direct mapping from
the boxes shown to an OOS specification of the system. To
transform this specification into a complete implementation
it is necessary to specify the properties and subclasses of the
various boxes, together with the output functions associated
with the various processes. These output functions have each

been specified in about a dozen lines of code.
Of course, to model a particular task within the production

system it is still necessary to provide task-specific productions.
In order to validate the production system described here,
it has been tested with the productions necessary for multi-
column addition as described by Anderson (1993, p. 10).

Discussion
OOS currently exists as a Sceptic program implementing the
execution model and a set of Sceptic libraries implementing
the class hierarchy. The libraries have been sufficient for our
modeling to date, but elaborations to increase coverage are
likely as the language is applied to further domains. For ex-
ample, at present buffers cannot send messages, but it may
be appropriate to include, as a subclass of limited capacity
buffers, a class of buffer which sends messages consisting
of those elements shunted out when the buffer’s capacity is
exceeded. Work is also continuing on attempting to further
subclassify processes (into classes such as delay, filter, mon-
itor, and agglomerate). This is particularly important as
the specification of a process’ output function is currently
the only substantive programming required in using the lan-
guage. Lastly, network objects (e.g., feed-forward networks,
associative networks, recurrent networks, and interactive ac-
tivation networks) may also be included, thus allowing the
language to be used for modular connectionist and hybrid
symbolic/connectionist modeling.

Attempts have previously been made to develop compu-
tational tools and modeling environments to assist cognitive
modeling (e.g., OPS: Forgy, 1981). Such environments have
had little penetration into mainstream cognitive science. The
language described here attempts to address the perceived
failings of such earlier tools in a number of ways, based on
recent advances in computer science. Firstly, by taking func-
tional modularity as the major design requirement, OOS is
closer to the formalisms used by traditional cognitive psy-
chologists than, for example, languages based on production
system. Secondly, OOS aims to minimize the programming
(and hence computational sophistication) required of its uses.
Early modeling environments were generally most successful
with those skilled in computer languages. OOS still requires
a certain level of computational expertise (in specifying the
output functions of processes), but this is strictly limited, and
as noted above it is anticipated that the inclusion of more
object classes will further reduce the programming skills re-
quired. Furthermore, the language is well suited to a graphical
interface, and a preliminary version of a Graphical OOS Ed-
itor (GOOSE) which allows box/arrow diagrams to be drawn
and automatically converted from the diagrammatic form into
OOS syntax has been developed. This further simplifies the
modeling process, taking much of the burden of writing tex-
tual code off the psychologist. Work is continuing on a more
sophisticated version of this interface.

The use of an object-oriented language for cognitive mod-
eling raises a number of issues. Firstly, it should be noted that
the contribution of object-orientedness is more than imple-
mentational. Although object-orientedness was motivated on
the grounds of providing an appropriate implementation base,
the use of a class hierarchy could (if sufficiently extensive)
provide a standard specification of box types. Such a specifi-

560



cation would lessen the problem of ambiguity and underspec-
ification faced by current uses of box/arrow diagrams, and
thereby increase communicability of theories. Furthermore,
by associating properties with box classes, issues concerning
the relation between theory and implementation (and specif-
ically if certain properties are theoretically relevant) can be
addressed.

There is also a question of whether more standard object-
oriented languages (such as C++ or Smalltalk) would be more
appropriate than OOS for cognitive modeling. In one sense,
the language in which the class hierarchy is implemented
is irrelevant, but implementing it in Sceptic does bring the
benefits of certain primitives common in cognitive theories.
The execution model could similarly be implemented in any
language — it is, after all, effectively just a shell. It is the
properties of that shell that are important, and it is this, which
identifies OOS as an object-oriented language specialized for
cognitive modeling.

Programmers often abuse languages by using them in ways
which conflict with their design aims, and the use of an object-
oriented language cannot enforce the development of object-
oriented programs. It is, however, difficult to misuse OOS.
The underlying execution model is built around the notion
of communicating objects. To avoid the use of such ob-
jects requires substantial knowledge about the underlying im-
plementation of the execution model. This issue is further
addressed by GOOSE, which places tight restrictions on text
based programming. The complete model (apart from the out-
put functions of processes) must be expressed in box/arrow
notation. The only possible abuse within GOOSE is to over-
load processes (i.e., to have one process performing func-
tionally distinct operations). The converse of this is that the
language may be too restrictive, not allowing sufficient free-
dom to implement certain classes of models. In general, this
difficulty can be addressed by extending the class hierarchy
as necessary. Such extensions do, of course, require substan-
tial computational sophistication, and could not be achieved
unaided by OOS’ target audience.

Lastly, it might be objected that use of OOS implies a com-
mitment to boxes in the brain with messages (and an attendant
language of thought) being sent between them. This is not
the case. Implicit in the concept of functional modularity
is the differentiation of structure and function. Functional
modularity does not imply structural modularity: a functional
sub-system is a system at the cognitive level and it need not
correspond to any identifiable structural sub-system (either
neurally localized or neurally distinct) at the neurophysiolog-
ical level.

Conclusion
OOS, an object-oriented language for computational model-
ing, has been described. The language facilitates the model-
ing process by providing a set of object classes appropriate
for (symbolic) cognitive modeling within the box/arrow tra-
dition. The language is primarily intended to simplify the
development of computational models and thereby empower
computationally less sophisticated researchers. The language
is also appropriate for the fast prototyping of models and the-
ory driven experimentation (by varying properties or classes
of boxes within a model).

Acknowledgements
I am grateful to John Fox, Sofka Barreau, John Morton,
Nick Braisby, Tim Shallice, David Glasspool, Bradley Franks,
Jonathan Farringdon and two anonymous referees for discus-
sion of, and/or comments on, this work. This work was
supported by the Joint Council Initiative in Cognitive Science
and Human-Computer Interaction, project grant #G9212530.
Further details of this project may be obtained from
our Web page at http://www.psychol.ucl.ac.uk/
research/adrem/adrem.html.

References
Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ:

Lawrence Erlbaum Associates.
Barnard, P. J. (1985). Interacting cognitive subsystems: A

psycholinguistic approach to short-term memory. In El-
lis, A. (Ed.), Progress in the Psychology of Language, (ch.
6, pp. 197–258). Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates.

Burgess, N. & Hitch, G. J. (1992). Toward a network model
of the articulatory loop. Journal of Memory and Language,
31, 429–460.

Cooper, R. & Farringdon, J. (1993). Sceptic Version 4 User
Manual Tech. Rep. UCL-PSY-ADREM-TR6, Department
of Psychology, University College London, UK.

Cooper, R., Fox, J., Farringdon, J. & Shallice, T. (1993). To-
wards a systematic methodology for cognitive modeling.
Tech. Rep. UCL-PSY-ADREM-8, Department of Psychol-
ogy, University College London, UK. To appear (subject to
revision) in Artificial Intelligence.

Fodor, J. D. & Frazier, L. (1980). Is the human sentence
parsing mechanism an ATN? Cognition, 8(4), 417–459.

Forgy, C. L. (1981). OPS5 User’s Manual. Tech. Rep. CMU-
CS-81-135, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, Pennsylvania.

Frazier, L. & Fodor, J. D. (1978). The sausage machine: A
new two-stage parsing model. Cognition, 6(4), 291–325.

Hajnal, S., Fox, J. & Krause, P. (1989). Sceptic User Manual:
Version 3.0. Tech. Rep., Advanced Computation Labora-
tory, Imperial Cancer Research Fund, London, UK.

Lichtheim, L. (1885). On aphasia. Brain, 7, 433–484.
Miikkulainen, R. (1993). Subsymbolic Natural Language

Processing. Cambridge, MA: MIT Press.
Morton, J. (1981). The status of information processing mod-

els of language. Philosophical Transactions of the Royal
Society of London B, 295, 387–396.

Newell, A. (1990). Unified Theories of Cognition. Cam-
bridge, MA: Harvard University Press.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. &
Lorensen, W. (1991). Object-Oriented Modeling and De-
sign. Englewood Cliffs, NJ: Prentice-Hall.

Shallice, T. (1988). From Neuropsychology to Mental Struc-
ture. Cambridge, UK: Cambridge University Press.

Wermter, S. & Lehnert, W. G. (1989). A hybrid sym-
bolic/connectionist model for noun phrase understanding.
Connection Science, 1(3), 225–272.

561


